Cell Motility of Tumor Cells Visualized in Living Intact Primary Tumors Using Green Fluorescent Protein1

نویسندگان

  • Kim L. Farina
  • Jeffrey B. Wyckoff
  • Johanna Rivera
  • Herbert Lee
  • Jeffrey E. Segall
  • John S. Condeelis
  • Joan G. Jones
چکیده

Metastasis is the leading cause of death in cancer patients. Cell molili! \ is believed to be a necessary step in the metastatic process (L. Liotta and W. G. Stetler-Stevenson, In: Cancer: Principles and Practice of Oncology, pp. 134-149, 1993). Currently, most methods available to study the be havior of metastatic tumor cells are indirect, e.g., cell motility is examined in vitro and the results are correlated with metastatic capability (A. W. Partin, et al., Cancer Treat. Res., 59: 121-130, 1992). We have developed a model that directly examines the motility of metastatic primary tumor cells in situ. A metastatic rat breast cancer cell line was established that constitutively expresses green fluorescent protein. Upon s.c. injection of these cells into the mammary fat pad of female Fischer 344 rats, primary and metastatic tumors form that fluoresce when they are excited with FITC-filtered light. Animations of metastatic tumor cells moving in live rats were generated by intravital imaging of the primary tumor in situ on a laser scanning confocal microscope. With this model, the behavioral phenotype of metastatic and nonmetastatic tumor cells can be described and determined. This information will allow the effects of genetic manip ulations or therapeutic treatments on this phenotype to be determined (D. R. Soil, Int. Rev. Cytol., 163: 43-104, 1995). This is the first time that living primary tumor cells in a live animal have been visualized as part of a clinically relevant model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein.

Metastasis is the leading cause of death in cancer patients. Cell motility is believed to be a necessary step in the metastatic process (L. Liotta and W. G. Stetler-Stevenson, In: Cancer: Principles and Practice of Oncology, pp. 134-149, 1993). Currently, most methods available to study the behavior of metastatic tumor cells are indirect, e.g., cell motility is examined in vitro and the results...

متن کامل

In vivo imaging with fluorescent proteins: the new cell biology.

We propose a new cell biology where the behavior of cells can be visualized in the living animal. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-...

متن کامل

Highly Efficient Transfection of Dendritic Cells Derived from Esophageal Squamous Cell Carcinoma Patient: Optimization with Green Fluorescent Protein and Validation with Tumor RNA as a Tool for Immuno-genetherapy

This study was conducted to optimize a highly efficient mRNA transfection into dendritic cells (DC) derived from esophageal squamous cell carcinoma (ESCC) patients. Applying an electroporation technique, in vitro synthesized Green Fluorescent Protein (GFP) mRNA was transfected as an indicator into the DCs derived from a healthy donor. Flow cytometry revealed 84.9% transfection efficiency for DC...

متن کامل

Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling.

We have developed animal models of breast cancer that allow the direct examination of the behavior of individual green fluorescent protein-expressing carcinoma cells in live nonmetastatic and metastatic primary tumors in situ. We have combined this model with multiphoton microscopy to image differences in cell behavior within the primary tumor. Differences in cell behavior between nonmetastatic...

متن کامل

Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics.

Dual-color fluorescent cells with one color fluorescent protein in the nucleus and another color fluorescent protein in the cytoplasm were genetically engineered. The dual-color cancer cells enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006